Learning Resource Type

Classroom Resource

Orbitals: Crash Course Chemistry #25

Subject Area

Science

Grade(s)

9, 10, 11, 12

Overview

In this episode of Crash Course Chemistry, Hank discusses what molecules actually look like and why, some quantum-mechanical three-dimensional wave functions are explored, he touches on hybridization, and delves into sigma and pi bonds.

    Science (2015) Grade(s): 09-12 - Chemistry

    SC15.CHM.3

    Use the periodic table as a systematic representation to predict properties of elements based on their valence electron arrangement.

    Unpacked Content

    UP:SC15.CHM.3

    Vocabulary

    • Protons
    • Neutrons
    • Nucleus
    • Electrons
    • Valence
    • Main group elements
    • Properties
    • Atoms
    • Elements
    • Periods/ Rows
    • Groups/ Families/ Columns
    • Atomic/ molecular level
    • Macroscopic level
    • Periodic trends
    • metal/ nonmetal/ metalloid behavior
    • electrical/ heat conductivity
    • electronegativity
    • electron affinity
    • ionization energy
    • atomic-covalent/ ionic radii
    • Molecular modeling
    • Lewis dot
    • 3-D ball-and-stick
    • space-filling
    • VSEPR
    • Types of bonds
    • ionic bonds
    • covalent/ molecular bonds
    • metallic bonds
    • Molecular shapes
    • Ions
    • Ionic compounds
    • Covalent/ molecular compounds

    Knowledge

    Students know:
    • The atom has a positively-charged nucleus, containing protons and neutrons, surrounded by negatively-charged electrons.
    • The periodic table can be used to determine the number of particles in an atom of a given element.
    • The relationship between the arrangement of main group elements on the periodic table and the pattern of valence electrons in their atoms.
    • The relationship between the arrangement of elements on the periodic table and the number of protons in their atoms.
    • The trends in relative size, reactivity, and electronegativity in atoms are based on attractions of the valence electrons to the nucleus.
    • The number and types of bonds formed (i.e. ionic, covalent, metallic) by an element and between elements are based on the arrangement of valence electrons in the atoms.
    • The shapes of molecules are based on the arrangement of valence electrons in the atoms.
    • The rules for naming chemical compounds are based upon the type of bond formed.
    • The number and charges in stable ions that form from atoms in a group of the periodic table are based on the arrangement of valence electrons in the atoms.

    Skills

    Students are able to:
    • Predict relative properties of elements using the periodic table.
    • Predict patterns in periodic trends based on the structure of the atom.
    • Predict patterns in bonding and shape based on the structure of the atom.
    • Use the periodic table to determine how elements will bond.

    Understanding

    Students understand that:
    • Models are based on evidence to illustrate the relationships between systems or between components of a system.
    • Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons.
    • The periodic table arranges elements into periods/ rows by the number of protons in the atom's nucleus.
    • Elements with similar properties are placed into groups/ families/ columns based on the repeating pattern of valence electrons in their atoms.
    • Attraction and repulsion between electrical charges at the atomic scale explain the structure, properites, and transformations of matter, as well as the contact forces between material objects.
    • The attraction and repulsion of charged particles in the atom creates patterns of properties of elements.
    • The arrangement of valence electrons in an atom also creates patterns of properties of elements.
    • Elements form bonds based upon their valence electron arrangement.
    • Chemical compounds are named based upon the type of bonds formed by their constituent atoms/ ions.
    • Different patterns may be observed at the atomic/ molecular level and the macroscopic level.

    Scientific and Engineering Practices

    Developing and Using Models; Analyzing and Interpreting Data

    Crosscutting Concepts

    Patterns; Systems and System Models; Structure and Function
    Link to Resource

    CR Resource Type

    Audio/Video

    Resource Provider

    PBS
    Accessibility

    Accessibility

    Video resources: includes closed captioning or subtitles
    License

    License Type

    Custom
    ALSDE LOGO