Software Engineering: Crash Course Computer Science #16

Learning Resource Type

Classroom Resource

Subject Area

Digital Literacy and Computer Science

Grade(s)

9, 10, 11, 12

Overview

This video will talk about how HUGE programs with millions of lines of code like Microsoft Office are built. Programs like these are way too complicated for a single person, but instead require teams of programmers using the tools and best practices that form the discipline of Software Engineering. We'll talk about how large programs are typically broken up into function units that are nested into objects known as Object-Oriented Programming, as well as how programmers write and debug their code efficiently, document and share their code with others, and also how code repositories are used to allow programmers to make changes while mitigating risk.

Digital Literacy and Computer Science (2018) Grade(s): 09-12

DLCS18.HS.3

Differentiate between a generalized expression of an algorithm in pseudocode and its concrete implementation in a programming language.

UP:DLCS18.HS.3

Vocabulary

  • pseudocode
  • programming language
a.
  • approximated
b.
  • iteration
  • conditional statements
  • control structures
c.
  • iterative loop
  • selection constructs
  • recursion

Knowledge

Students know:
  • that differences exist in pseudocode and a programming language.
  • that programming languages have certain requirements for language and syntax.
a.
  • that some programs cannot return a result in a reasonable time frame, therefore approximations must be allowed in those cases.
b.
  • how to identify sequential statements, conditional statements, and/or iterations in code.
  • the differences between sequential statements, conditional statements, and/or iterations.
  • trade-offs exist with using one control structure over another.
c.
  • some decisions in a program will require the use of iterative loops, selection constructs, or recursion.
d.
  • programs can be written to satisfy a number of needs such as performance, reusability, and ease of implementation.
  • that most times, algorithms will differ based on the need of the program; performance, reusability, or ease of implementation.
e.
  • that programs can be written with specific priorities in mind.
  • that there are multiple correct ways to write a program.
  • that solutions are often chosen to meet the priority need of the program.

Skills

Students are able to:
  • distinguish between a generalized expression of an algorithm in pseudocode and its concrete implementation in a programming language.
  • point out similarities in vocabulary and syntax between pseudocode and an algorithm.
  • point out differences in vocabulary and syntax between pseudocode and an algorithm.
a.
  • explain that some algorithms do not lead to exact solutions in a reasonable amount of time and thus approximations are acceptable.
b.
  • identify sequential statements, conditional statements, and/or iterations in code.
  • identify tradeoffs associated with using one control structure over another.
c.
  • distinguish when a problem solution requires decisions to be made among alternatives or when a solution needs to be iteratively processed to arrive at a result.
d.
  • evaluate and select algorithms based on performance, reusability, and ease of implementation.
e.
  • explain how more than one algorithm may solve the same problem and yet be characterized with different priorities.

Understanding

Students understand that:
  • similarities and differences exist in pseudocode and programming code.
  • some programming languages more closely resemble pseudocode than do other programming languages.
a.
  • due to time or financial constraints, some programs may return an approximation of a solution.
b.
  • both benefits and drawbacks exist when selecting one control structure over another in a code.
c.
  • programs can use multiple methods to arrive at a solution.
d.
  • there are times when a program needs to be selected for a specific purpose, such as performance, reusability, and/or ease of implementation.
e.
  • multiple algorithms can solve the same problem.
  • algorithms can operate with a specific priority in mind, such as speed, simplicity, and/or safety.
Digital Literacy and Computer Science (2018) Grade(s): 09-12

DLCS18.HS.9

Demonstrate the ability to verify the correctness of a program.

UP:DLCS18.HS.9

Vocabulary

  • compile
  • program
  • syntax

Knowledge

Students know:
  • proper syntax and formatting for a coding language.
  • how to identify coding errors in a programming language.
a.
  • programs must be tested to verify that the desired task is executed properly.
  • testing a program requires a scenario where you can easily verify that the result of the program is correct/accurate.
b.
  • a program can contain one of the following properties, but not be an appropriate program: correctness, efficiency, scalability and readability
  • it is important to have others review your code.
  • that to be a quality program, code must be correct, efficient, scalable and readable.

Skills

Students are able to:
  • analyze code for proper syntax and formatting.
a.
  • create a test case with verifiable results.
  • execute a program with the created test case to verify program performance.
  • locate errors in programming by executing test cases.
b.
  • work with others to review their code for correctness, efficiency, scalability and readability.

Understanding

Students understand that:
  • programming languages each have their own required formatting which must be adhered to for a program to run correctly.
  • errors in programming languages prevent the program from executing its task.
  • each language has its own syntax and method for identifying potential errors.
a.
  • code can be formatted correctly and a program can still produce unintended results.
  • a test case is vital to verifying that a program is executing a task as intended.
b.
  • to be a quality program, code must be correct, efficient, scalable and readable.
  • it is important to have others proofread your code.
Digital Literacy and Computer Science (2018) Grade(s): 09-12

DLCS18.HS.10

Resolve or debug errors encountered during testing using iterative design process.

UP:DLCS18.HS.10

Vocabulary

  • debug

Knowledge

Students know:
  • steps of the problem solving process.
  • how to identify errors in an iterative design process.

Skills

Students are able to:
  • review a process and identify errors in procedure.
  • rectify errors found in a process.
  • test resolution to verify that the process now runs as intended.

Understanding

Students understand that:
  • errors in a process can prevent a solution.
  • resolving an error will allow the process to function as intended.

CR Resource Type

Audio/Video

Resource Provider

PBS

License Type

CUSTOM

Accessibility

Video resources: includes closed captioning or subtitles
ALSDE LOGO