Science (2015) Grade(s): 09-12 - Biology

SC15.BIO.10

Construct an explanation and design a real-world solution to address changing conditions and ecological succession caused by density-dependent and/or density-independent factors.*

Unpacked Content

Scientific and Engineering Practices

Constructing Explanations and Designing Solutions

Crosscutting Concepts

Cause and Effect

Knowledge

Students know:
  • Factors associated with population density are important regulators of population growth.
  • Density-independent factors that can impact population growth (e.g., flood, drought, extreme heat or cold, tornadoes, etc.).
  • Density-dependent factors that can impact population growth (e.g., predation, disease, parasites, competition).
  • The different types of ecological succession and their causes. Primary succession is the development of a community in an area of exposed rock that does not have any topsoil (e.g., hardened lava flow).
  • Secondary Succession is the change that takes place after a community of organisms have been removed but the topsoil remains intact (e.g., fire, flood, etc.).
  • Engineering design principles.

Skills

Students are able to:
  • Collect and organize population growth data compiled on population growth under varying conditions related to food availability, rainfall, predation, migration, and disease.
  • Analyze data to categorize factors, organize data and draw conclusions about a variety of limiting factors to classify each as density-dependent or independent.
  • Identify a problem, assess the data, determine if enough information is provided to make an informed decision, assess whether a solution is needed, and recommend what form that solution should take.
  • Apply engineering design principles to the development of a solution, identifying required inputs and expected outcomes and determine how the solution will be tested and refined.

Understanding

Students understand that:
  • Ecosystems are constantly changing.
  • Changes in an ecosystem are the result of density-dependent or density-independent factors, sometimes including human activity.
  • By using the engineering design process, solutions to ecological problems can be developed, tested and refined.

Vocabulary

  • Population density
  • Dispersion
  • Density-independent factor
  • Density-dependent factor
  • Population growth rate
  • Limiting factor
  • Ecological succession
  • Primary succession
  • Climax community
  • Secondary succession
  • Pioneer species
ALSDE LOGO